Decision making under uncertainty : (Record no. 848627)

MARC details
000 -LEADER
campo de control de longitud fija 09714nam a2200373 a 4500
003 - IDENTIFICADOR DE NÚMERO DE CONTROL
campo de control AR-LpUFIB
005 - FECHA Y HORA DE LA ÚLTIMA TRANSACCIÓN
campo de control 20240131171048.0
007 - CAMPO FIJO DE DESCRIPCIÓN FÍSICA--INFORMACIÓN GENERAL
campo de control de longitud fija ta
008 - DATOS DE LONGITUD FIJA--INFORMACIÓN GENERAL
campo de control de longitud fija 230201s2015 xxua dr 000 0 eng d
020 ## - NÚMERO INTERNACIONAL ESTÁNDAR DEL LIBRO
Número Internacional Estándar del Libro 9780262029254
024 8# - IDENTIFICADOR DE OTROS ESTÁNDARES
Número estándar o código DIF006610
040 ## - FUENTE DE CATALOGACIÓN
Centro catalogador/agencia de origen AR-LpUFIB
Lengua de catalogación spa
Centro/agencia transcriptor AR-LpUFIB
100 1# - ENTRADA PRINCIPAL--NOMBRE DE PERSONA
Nombre de persona Kochenderfer, Mykel J.
9 (RLIN) 257444
245 10 - MENCIÓN DEL TÍTULO
Título Decision making under uncertainty :
Resto del título theory and application
250 ## - MENCION DE EDICION
Mención de edición 1st ed.
260 ## - PUBLICACIÓN, DISTRIBUCIÓN, ETC.
Lugar de publicación, distribución, etc. Cambridge :
Nombre del editor, distribuidor, etc. MIT Press,
Fecha de publicación, distribución, etc. 2015
300 ## - DESCRIPCIÓN FÍSICA
Extensión xxv, 323 p. :
Otras características físicas il.
490 0# - MENCIÓN DE SERIE
Mención de serie MIT Lincoln Laboratory Series
500 ## - NOTA GENERAL
Nota general Incluye índice.
505 0# - NOTA DE CONTENIDO CON FORMATO
Nota de contenido con formato 1. Introduction -- 1.1. Decision Making -- 1.2. Example Applications -- 1.2.1. Traffic Alert and Collision Avoidance System -- 1.2.2. Unmanned Aircraft Persistent Surveillance -- 1.3. Methods for Designing Decision Agents -- 1.3.1. Explicit Programming -- 1.3.2. Supervised Learning -- 1.3.3. Optimization -- 1.3.4. Planning -- 1.3.5. Reinforcement Learning -- 1.4. Overview -- 1.5. Further Reading References -- 2. Probabilistic Models -- 2.1. Representation -- 2.1.1. Degrees of Belief and Probability -- 2.1.2. Probability Distributions -- 2.1.3. Joint Distributions -- 2.1.4. Bayesian Network Representation -- 2.1.5. Conditional Independence -- 2.1.6. Hybrid Bayesian Networks -- 2.1.7. Temporal Models -- 2.2. Inference -- 2.2.1. Inference for Classification -- 2.2.2. Inference in Temporal Models -- 2.2.3. Exact Inference -- 2.2.4. Complexity of Exact Inference -- 2.2.5. Approximate Inference -- 2.3. Parameter Learning -- 2.3.1. Maximum Likelihood Parameter Learning -- 2.3.2. Bayesian Parameter Learning -- 2.3.3. Nonparametric Learning -- 2.4. Structure Learning -- 2.4.1. Bayesian Structure Scoring -- 2.4.2. Directed Graph Search -- 2.4.3. Markov Equivalence Classes -- 2.4.4. Partially Directed Graph Search -- 2.5. Summary -- 2.6. Further Reading References -- 3. Decision Problems -- 3.1. Utility Theory -- 3.1.1. Constraints on Rational Preferences -- 3.1.2. Utility Functions -- 3.1.3. Maximum Expected Utility Principle -- 3.1.4. Utility Elicitation -- 3.1.5. Utility of Money -- 3.1.6. Multiple Variable Utility Functions -- 3.1.7. Irrationality -- 3.2. Decision Networks -- 3.2.1. Evaluating Decision Networks -- 3.2.2. Value of Information -- 3.2.3. Creating Decision Networks -- 3.3. Games -- 3.3.1. Dominant Strategy Equilibrium -- 3.3.2. Nash Equilibrium -- 3.3.3. Behavioral Game Theory -- 3.4. Summary -- 3.5. Further Reading References -- 4. Sequential Problems -- 4.1. Formulation -- 4.1.1. Markov Decision Processes -- 4.1.2. Utility and Reward -- 4.2. Dynamic Programming -- 4.2.1. Policies and Utilities -- 4.2.2. Policy Evaluation -- 4.2.3. Policy Iteration -- 4.2.4. Value Iteration -- 4.2.5. Grid World Example -- 4.2.6. Asynchronous Value Iteration -- 4.2.7. Closed- and Open-Loop Planning -- 4.3. Structured Representations -- 4.3.1. Factored Markov Decision Processes -- 4.3.2. Structured Dynamic Programming -- 4.4. Linear Representations -- 4.5. Approximate Dynamic Programming -- 4.5.1. Local Approximation -- 4.5.2. Global Approximation -- 4.6. Online Methods -- 4.6.1. Forward Search -- 4.6.2. Branch and Bound Search -- 4.6.3. Sparse Sampling -- 4.6.4. Monte Carlo Tree Search -- 4.7. Direct Policy Search -- 4.7.1. Objective Function -- 4.7.2. Local Search Methods -- 4.7.3. Cross Entropy Methods -- 4.7.4. Evolutionary Methods -- 4.8. Summary -- 4.9. Further Reading References -- 5. Model Uncertainty -- 5.1. Exploration and Exploitation -- 5.1.1. Multi-Armed Bandit Problems -- 5.1.2. Bayesian Model Estimation -- 5.1.3. Ad Hoc Exploration Strategies -- 5.1.4. Optimal Exploration Strategies -- 5.2. Maximum Likelihood Model-Based Methods -- 5.2.1. Randomized Updates -- 5.2.2. Prioritized Updates -- 5.3. Bayesian Model-Based Methods -- 5.3.1. Problem Structure -- 5.3.2. Beliefs over Model Parameters -- 5.3.3. Bayes-Adaptive Markov Decision Processes -- 5.3.4. Solution Methods -- 5.4. Model-Free Methods -- 5.4.1. Incremental Estimation -- 5.4.2. Q-Learning -- 5.4.3. Sarsa -- 5.4.4. Eligibility Traces -- 5.5. Generalization -- 5.5.1. Local Approximation -- 5.5.2. Global Approximation -- 5.5.3. Abstraction Methods -- 5.6. Summary -- 5.7. Further Reading References -- 6. State Uncertainty -- 6.1. Formulation -- 6.1.1. Example Problem -- 6.1.2. Partially Observable Markov Decision Processes -- 6.1.3. Policy Execution -- 6.1.4. Belief-State Markov Decision Processes -- 6.2. Belief Updating -- 6.2.1. Discrete State Filter -- 6.2.2. Linear-Gaussian Filter -- 6.2.3. Particle Filter -- 6.3. Exact Solution Methods -- 6.3.1. Alpha Vectors -- 6.3.2. Conditional Plans -- 6.3.3. Value Iteration -- 6.4. Offline Methods -- 6.4.1. Fully Observable Value Approximation -- 6.4.2. Fast Informed Bound -- 6.4.3. Point-Based Value Iteration -- 6.4.4. Randomized Point-Based Value Iteration -- 6.4.5. Point Selection -- 6.4.6. Linear Policies -- 6.5. Online Methods -- 6.5.1. Lookahead with Approximate Value Function -- 6.5.2. Forward Search -- 6.5.3. Branch and Bound -- 6.5.4. Monte Carlo Tree Search -- 6.6. Summary -- 6.7. Further Reading References -- 7. Cooperative Decision Making -- 7.1. Formulation -- 7.1.1. Decentralized POMDPs -- 7.1.2. Example Problem -- 7.1.3. Solution Representations -- 7.2. Properties -- 7.2.1. Differences with POMDPs -- 7.2.2. Dec-POMDP Complexity -- 7.2.3. Generalized Belief States -- 7.3. Notable Subclasses -- 7.3.1. Dec-MDPs -- 7.3.2. ND-POMDPs -- 7.3.3. MMDPs -- 7.4. Exact Solution Methods -- 7.4.1. Dynamic Programming -- 7.4.2. Heuristic Search -- 7.4.3. Policy Iteration -- 7.5. Approximate Solution Methods -- 7.5.1. Memory-Bounded Dynamic Programming -- 7.5.2. Joint Equilibrium Search -- 7.6. Communication -- 7.7. Summary -- 7.8. Further Reading References -- 8. Probabilistic Surveillance Video Search -- 8.1. Attribute-Based Person Search -- 8.1.1. Applications -- 8.1.2. Person Detection -- 8.1.3. Retrieval and Scoring -- 8.2. Probabilistic Appearance Model -- 8.2.1. Observed States -- 8.2.2. Basic Model Structure -- 8.2.3. Model Extensions -- 8.3. Learning and Inference Techniques -- 8.3.1. Parameter Learning -- 8.3.2. Hidden State Inference -- 8.3.3. Scoring Algorithm -- 8.4. Performance -- 8.4.1. Search Accuracy -- 8.4.2. Search Timing -- 8.5. Interactive Search Tool -- 8.6. Summary References -- 9. Dynamic Models for Speech Applications -- 9.1. Modeling Speech Signals -- 9.1.1. Feature Extraction -- 9.1.2. Hidden Markov Models -- 9.1.3. Gaussian Mixture Models -- 9.1.4. Expectation-Maximization Algorithm -- 9.2. Speech Recognition -- 9.3. Topic Identification -- 9.4. Language Recognition -- 9.5. Speaker Identification -- 9.5.1. Forensic Speaker Recognition -- 9.6. Machine Translation -- 9.7. Summary References -- 10. Optimized Airborne Collision Avoidance -- 10.1. Airborne Collision Avoidance Systems -- 10.1.1. Traffic Alert and Collision Avoidance System -- 10.1.2. Limitations of Existing System -- 10.1.3. Unmanned Aircraft Sense and Avoid -- 10.1.4. Airborne Collision Avoidance System X -- 10.2. Collision Avoidance Problem Formulation -- 10.2.1. Resolution Advisories -- 10.2.2. Dynamic Model -- 10.2.3. Reward Function -- 10.2.4. Dynamic Programming -- 10.3. State Estimation -- 10.3.1. Sensor Error -- 10.3.2. Pilot Response -- 10.3.3. Time to Potential Collision -- 10.4. Real-Time Execution -- 10.4.1. Online Costs -- 10.4.2. Multiple Threats -- 10.4.3. Traffic Alerts -- 10.5. Evaluation -- 10.5.1. Safety Analysis -- 10.5.2. Operational Suitability and Acceptability -- 10.5.3. Parameter Tuning -- 10.5.4. Flight Test -- 10.6. Summary References -- 11. Multiagent Planning for Persistent Surveillance -- 11.1. Mission Description -- 11.2. Centralized Problem Formulation -- 11.2.1. State Space -- 11.2.2. Action Space -- 11.2.3. State Transition Model -- 11.2.4. Reward Function -- 11.3. Decentralized Approximate Formulations -- 11.3.1. Factored Decomposition -- 11.3.2. Group Aggregate Decomposition -- 11.3.3. Planning -- 11.4. Model Learning -- 11.5. Flight Test -- 11.6. Summary References -- 12. Integrating Automation with Humans -- 12.1. Human Capabilities and Coping -- 12.1.1. Perceptual and Cognitive Capabilities -- 12.1.2. Naturalistic Decision Making -- 12.2. Considering the Human in Design -- 12.2.1. Trust and Value of Decision Logic Transparency -- 12.2.2. Designing for Different Levels of Certainty -- 12.2.3. Supporting Decisions over Long Timescales -- 12.3. A Systems View of Implementation -- 12.3.1. Interface, Training, and Procedures -- 12.3.2. Measuring Decision Support Effectiveness -- 12.3.3. Organization Influences on System Effectiveness -- 12.4. Summary -- References -- Index
650 #4 - PUNTO DE ACCESO ADICIONAL DE MATERIA--TÉRMINO DE MATERIA
Término de materia o nombre geográfico como elemento de entrada SISTEMAS DE SOPORTE A LA TOMA DE DECISIONES
9 (RLIN) 248063
650 #4 - PUNTO DE ACCESO ADICIONAL DE MATERIA--TÉRMINO DE MATERIA
Término de materia o nombre geográfico como elemento de entrada INTELIGENCIA ARTIFICIAL
9 (RLIN) 32538
650 #4 - PUNTO DE ACCESO ADICIONAL DE MATERIA--TÉRMINO DE MATERIA
Término de materia o nombre geográfico como elemento de entrada SISTEMAS INTELIGENTES
9 (RLIN) 251946
653 ## - TÉRMINO DE INDIZACIÓN--NO CONTROLADO
Término no controlado toma de decisiones bajo incertidumbre
700 1# - ENTRADA AGREGADA--NOMBRE PERSONAL
Nombre de persona Amato, Christopher
9 (RLIN) 257445
700 1# - ENTRADA AGREGADA--NOMBRE PERSONAL
Nombre de persona Vian, John
9 (RLIN) 257446
700 1# - ENTRADA AGREGADA--NOMBRE PERSONAL
Nombre de persona How, Jonathan P.
9 (RLIN) 257447
700 1# - ENTRADA AGREGADA--NOMBRE PERSONAL
Nombre de persona Chowdhary, Girish
9 (RLIN) 257448
700 1# - ENTRADA AGREGADA--NOMBRE PERSONAL
Nombre de persona Üre, N. Kemal
9 (RLIN) 257449
700 1# - ENTRADA AGREGADA--NOMBRE PERSONAL
Nombre de persona Torres-Carrasquillo, Pedro A.
9 (RLIN) 257450
700 1# - ENTRADA AGREGADA--NOMBRE PERSONAL
Nombre de persona Thornton, Jason R.
9 (RLIN) 257451
700 1# - ENTRADA AGREGADA--NOMBRE PERSONAL
Nombre de persona Davison Reynolds, Hayley J.
9 (RLIN) 257452
942 ## - ELEMENTOS DE ENTRADA SECUNDARIOS (KOHA)
Tipo de ítem Koha Libros
Holdings
Estado retirado Estado de pérdida Estado de daño No para préstamo Biblioteca de origen Biblioteca actual Fecha de adquisición Número de inventario Total de préstamos Signatura topográfica completa Código de barras Visto por última vez Precio de reemplazo Tipo de ítem Koha
      Disponible para préstamo Biblioteca Fac.Informática Biblioteca Fac.Informática 31/01/2024 DIF-04593   I.2.3 DEC DIF-04593 31/01/2024 31/01/2024 Libros

Powered by Koha