Combinatorial functional and differential equations applied to differential posets

By: Material type: ArticleArticleSeries: ^p Datos electrónicos (1 archivo : 309 KB)Publication details: ref_localidad@37940 : , 2008Subject(s): Online resources: Summary: We give combinatorial proofs of the primary results developed by Stanley for deriving enumerative properties of differential posets. In order to do this we extend the theory of combinatorial differential equations developed by Leroux and Viennot. © 2007 Elsevier B.V. -- Keywords: Differential posets;Y-graphs; Joyal species; Combinatorial differential equations
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Call number Status Date due Barcode
Capítulo de libro Capítulo de libro Biblioteca Fac.Informática A0107 (Browse shelf(Opens below)) Available DIF-A0107

Formato de archivo: PDF. -- Este documento es producción intelectual de la Facultad de Informática-UNLP (Colección BIPA / Biblioteca.) -- Disponible también en línea (Cons. 06/03/2009)

We give combinatorial proofs of the primary results developed by Stanley for deriving enumerative properties of differential posets. In order to do this we extend the theory of combinatorial differential equations developed by Leroux and Viennot. © 2007 Elsevier B.V. -- Keywords: Differential posets;Y-graphs; Joyal species; Combinatorial differential equations

Discrete Mathematics, Volume 308, Issue 10, 28 May 2008, pages 1864-1888.

There are no comments on this title.

to post a comment.

Powered by Koha