Combinatorial functional and differential equations applied to differential posets
Material type: ArticleSeries: ^p Datos electrónicos (1 archivo : 309 KB)Publication details: ref_localidad@37940 : , 2008Subject(s): Online resources: Summary: We give combinatorial proofs of the primary results developed by Stanley for deriving enumerative properties of differential posets. In order to do this we extend the theory of combinatorial differential equations developed by Leroux and Viennot. © 2007 Elsevier B.V. -- Keywords: Differential posets;Y-graphs; Joyal species; Combinatorial differential equationsItem type | Current library | Call number | Status | Date due | Barcode |
---|---|---|---|---|---|
Capítulo de libro | Biblioteca Fac.Informática | A0107 (Browse shelf(Opens below)) | Available | DIF-A0107 |
Formato de archivo: PDF. -- Este documento es producción intelectual de la Facultad de Informática-UNLP (Colección BIPA / Biblioteca.) -- Disponible también en línea (Cons. 06/03/2009)
We give combinatorial proofs of the primary results developed by Stanley for deriving enumerative properties of differential posets. In order to do this we extend the theory of combinatorial differential equations developed by Leroux and Viennot. © 2007 Elsevier B.V. -- Keywords: Differential posets;Y-graphs; Joyal species; Combinatorial differential equations
Discrete Mathematics, Volume 308, Issue 10, 28 May 2008, pages 1864-1888.
There are no comments on this title.