Smith-Waterman algorithm on heterogeneous systems : a case study

By: Contributor(s): Material type: ArticleArticlePublication details: ref_localidad@NULL : , 2014Description: 1 archivo (302,6 kB)Subject(s): Online resources: Summary: The well-known Smith-Waterman (SW) algorithm is a high-sensitivity method for local alignments. However, SW is expensive in terms of both execution time and memory usage, which makes it impractical in many applications. Some heuristics are possible but at the expense of losing sensitivity. Fortunately, previous research have shown that new computing platforms such as GPUs and FPGAs are able to accelerate SW and achieve impressive speedups. In this paper we have explored SW acceleration on a heterogeneous platform equipped with an Intel Xeon Phi coprocessor. Our evaluation, using the well-known Swiss-Prot database as a benchmark, has shown that a hybrid CPU-Phi heterogeneous system is able to achieve competitive performance (62.6 GCUPS), even with moderate lowlevel optimisations.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Call number Status Date due Barcode
Capítulo de libro Capítulo de libro Biblioteca Fac.Informática A0824 (Browse shelf(Opens below)) Available DIF-A0824

Formato de archivo PDF. -- Este documento es producción intelectual de la Facultad de Informática - UNLP (Colección BIPA/Biblioteca)

The well-known Smith-Waterman (SW) algorithm is a high-sensitivity method for local alignments. However, SW is expensive in terms of both execution time and memory usage, which makes it impractical in many applications. Some heuristics are possible but at the expense of losing sensitivity. Fortunately, previous research have shown that new computing platforms such as GPUs and FPGAs are able to accelerate SW and achieve impressive speedups. In this paper we have explored SW acceleration on a heterogeneous platform equipped with an Intel Xeon Phi coprocessor. Our evaluation, using the well-known Swiss-Prot database as a benchmark, has shown that a hybrid CPU-Phi heterogeneous system is able to achieve competitive performance (62.6 GCUPS), even with moderate lowlevel optimisations.

IEEE International Conference on Cluster Computing (2014 : Madrid, España)

There are no comments on this title.

to post a comment.

Powered by Koha