Generación de características y reconocimiento estadístico de patrones
Material type: ArticlePublication details: : , 2016Description: 1 archivo (764,3 kB)Subject(s): Online resources: Summary: Este trabajo describe una línea de I/D y los resultados esperados de la misma. El objetivo principal es analizar, desarrollar y evaluar modelos y métodos computacionales. A partir de los resultados obtenidos y los métodos propuestos el segundo objetivo es la transferencia de los mismos y el estudio de las técnicas de enseñanza-aprendizaje más adecuadas para los temas abordados. Los dos ejes principales de investigación son, generación de características y reconocimiento estadístico de patrones. Se analizan métodos de generación de características a partir de señales en general y de imágenes digitales en particular, considerando el método de aprendizaje supervisado subyacente y su poder de discriminación. El segundo eje se centra en estudiar, desarrollar y evaluar métodos computacionales de reconocimiento estadístico de patrones, en particular métodos de clasificación supervisada, no supervisada y reducción de dimensión. Todos los sistemas de reconocimiento de patrones diseñados o analizados responden a un modelo integral, en los cuales el énfasis esta dado en el análisis científico de cada etapa.Item type | Current library | Call number | Status | Date due | Barcode |
---|---|---|---|---|---|
Capítulo de libro | Biblioteca Fac.Informática | A0974 (Browse shelf(Opens below)) | Available | DIF-A0974 |
Formato de archivo PDF. -- Este documento es producción intelectual de la Facultad de Informática - UNLP (Colección BIPA/Biblioteca)
Este trabajo describe una línea de I/D y los resultados esperados de la misma. El objetivo principal es analizar, desarrollar y evaluar modelos y métodos computacionales. A partir de los resultados obtenidos y los métodos propuestos el segundo objetivo es la transferencia de los mismos y el estudio de las técnicas de enseñanza-aprendizaje más adecuadas para los temas abordados. Los dos ejes principales de investigación son, generación de características y reconocimiento estadístico de patrones. Se analizan métodos de generación de características a partir de señales en general y de imágenes digitales en particular, considerando el método de aprendizaje supervisado subyacente y su poder de discriminación. El segundo eje se centra en estudiar, desarrollar y evaluar métodos computacionales de reconocimiento estadístico de patrones, en particular métodos de clasificación supervisada, no supervisada y reducción de dimensión. Todos los sistemas de reconocimiento de patrones diseñados o analizados responden a un modelo integral, en los cuales el énfasis esta dado en el análisis científico de cada etapa.
Workshop de Investigadores en Ciencias de la Computación (18vo : 2016 : Entre Ríos, Argentina)
There are no comments on this title.