Optimization of the N-body simulation on Intel’s architectures based on AVX-512 instruction set

By: Contributor(s): Material type: ArticleArticlePublication details: : , 2019Description: 1 archivo (732,3 kB)Subject(s): Online resources: Summary: The N-body simulations have become a powerful tool to test the gravitational interaction among particles, ranging from a few bodies to complete galaxies. Even though N-body has already been optimized on many parallel platforms, there are hardly any studies which take advantage of the latest Intel architectures based on AVX-512 instruction set. This SIMD set was initially supported by Intel’s Xeon Phi Knights Landing (KNL) manycore processors launched at 2016. Recently, it has been included in Intel’s general-purpose processors too, starting at the Skylake (SKL) server microarchitecture and now in its successor Cascade Lake (CKL). This paper optimizes the all-pairs N-body simulation on both current Intel platforms supporting AVX-512 extensions: a Xeon Phi KNL node and a server equipped with a dual CKL processor. On the basis of a naive implementation, it is shown how the parallel implementation (can) reach, through different optimization techniques, 2355 and 2449 GFLOPS on the Xeon Phi KNL and the Xeon CKL platforms, respectively.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)

Formato de archivo PDF. -- Este documento es producción intelectual de la Facultad de Informática - UNLP (Colección BIPA/Biblioteca)

The N-body simulations have become a powerful tool to test the gravitational interaction among particles, ranging from a few bodies to complete galaxies. Even though N-body has already been optimized on many parallel platforms, there are hardly any studies which take advantage of the latest Intel architectures based on AVX-512 instruction set. This SIMD set was initially supported by Intel’s Xeon Phi Knights Landing (KNL) manycore processors launched at 2016. Recently, it has been included in Intel’s general-purpose processors too, starting at the Skylake (SKL) server microarchitecture and now in its successor Cascade Lake (CKL). This paper optimizes the all-pairs N-body simulation on both current Intel platforms supporting AVX-512 extensions: a Xeon Phi KNL node and a server equipped with a dual CKL processor. On the basis of a naive implementation, it is shown how the parallel implementation (can) reach, through different optimization techniques, 2355 and 2449 GFLOPS on the Xeon Phi KNL and the Xeon CKL platforms, respectively.

Argentine Congress of Computer Science, CACIC 2019 (25to : 2019 : Río Cuarto, Argentina)

There are no comments on this title.

to post a comment.

Powered by Koha