000 01870naa a2200265 a 4500
003 AR-LpUFIB
005 20240131170552.0
007 ta
008 230201s2005 xx do 000 0 eng d
024 8 _aDIF002451
040 _aAR-LpUFIB
_bspa
_cAR-LpUFIB
100 1 _aFiore, Marcelo
_9253676
245 1 0 _aReflective Kleisli subcategories of the category of Eilenberg-Moore algebras for factorization monads
260 _aref_localidad@37940 :
_b,
_c2005
490 0 _a^p Datos electrónicos (1 archivo : 243 KB)
500 _aFormato de archivo: PDF. -- Este documento es producción intelectual de la Facultad de Informática-UNLP (Colección BIPA / Biblioteca.) -- Disponible también en línea (Cons. 19/12/2008)
520 _aIt is well known that for any monad, the associated Kleisli category is embedded in the category of Eilenberg-Moore algebras as the free ones. We discovered some interesting examples in which this embedding is reflective; that is, it has a left adjoint. To understand this phenomenon we introduce and study a class of monads arising from factorization systems, and thereby termed factorization monads. For them we show that under some simple conditions on the factorization system the free algebras are a full reflective subcategory of the algebras. We provide various examples of this situation of a combinatorial nature. -- Keywords: Combinatorial structures; Factorization systems; Joyal species; Kleisli categories; Monads; Power series; Schanuel topos.
534 _a(2005) Theory and Applications of Categories, 15 (2), pp 40-65.
650 4 _aTEORÍA DE CATEGORÍAS
_9253677
650 4 _aMATEMÁTICA DE LA COMPUTACIÓN
_9247915
700 1 _aMenni, Matías
_9251746
856 4 0 _utac.mta.ca/tac/volumes/15/2/15-02abs.html
856 4 0 _u http://catalogo.info.unlp.edu.ar/meran/getDocument.pl?id=77
942 _cCP
999 _c844580
_d844580