000 | 01870naa a2200265 a 4500 | ||
---|---|---|---|
003 | AR-LpUFIB | ||
005 | 20240131170552.0 | ||
007 | ta | ||
008 | 230201s2005 xx do 000 0 eng d | ||
024 | 8 | _aDIF002451 | |
040 |
_aAR-LpUFIB _bspa _cAR-LpUFIB |
||
100 | 1 |
_aFiore, Marcelo _9253676 |
|
245 | 1 | 0 | _aReflective Kleisli subcategories of the category of Eilenberg-Moore algebras for factorization monads |
260 |
_aref_localidad@37940 : _b, _c2005 |
||
490 | 0 | _a^p Datos electrónicos (1 archivo : 243 KB) | |
500 | _aFormato de archivo: PDF. -- Este documento es producción intelectual de la Facultad de Informática-UNLP (Colección BIPA / Biblioteca.) -- Disponible también en línea (Cons. 19/12/2008) | ||
520 | _aIt is well known that for any monad, the associated Kleisli category is embedded in the category of Eilenberg-Moore algebras as the free ones. We discovered some interesting examples in which this embedding is reflective; that is, it has a left adjoint. To understand this phenomenon we introduce and study a class of monads arising from factorization systems, and thereby termed factorization monads. For them we show that under some simple conditions on the factorization system the free algebras are a full reflective subcategory of the algebras. We provide various examples of this situation of a combinatorial nature. -- Keywords: Combinatorial structures; Factorization systems; Joyal species; Kleisli categories; Monads; Power series; Schanuel topos. | ||
534 | _a(2005) Theory and Applications of Categories, 15 (2), pp 40-65. | ||
650 | 4 |
_aTEORÍA DE CATEGORÍAS _9253677 |
|
650 | 4 |
_aMATEMÁTICA DE LA COMPUTACIÓN _9247915 |
|
700 | 1 |
_aMenni, Matías _9251746 |
|
856 | 4 | 0 | _utac.mta.ca/tac/volumes/15/2/15-02abs.html |
856 | 4 | 0 | _u http://catalogo.info.unlp.edu.ar/meran/getDocument.pl?id=77 |
942 | _cCP | ||
999 |
_c844580 _d844580 |